

DECLARATION OF PERFORMANCE

DoP 0238

for fischer injection system FIS V Zero (Bonded fastener for use in concrete)

EN

Es= 210 000 MPa

 $\tau_{Rk,100}$ = NPD

1. Unique identification code of the product-type: DoP 0238

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially annexes B1-

B10.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-01-0601, Edition 04/2020

European Technical Assessment: ETA-20/0572; 2021-04-28

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annexes C1 - C3

Resistance to combined pull- out and concrete cone failure: Annexes C4 - C7

Resistance to concrete cone failure: Annex C4

Edge distance to prevent splitting under load: Annex C4

Robustness: Annexes C4 - C7

Maximum installation torque: Annexes B3, B4, B6 Minimum edge distance and spacing: Annexes B3 - B6

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annexes C1 - C3 Resistance to pry-out failure: Annex C4 Resistance to concrete edge failure: Annex C4

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: NPD Resistance to tension load, displacements, category C2: NPD Resistance to shear load, displacements, category C1: NPD Resistance to shear load, displacements, category C2: NPD

Factor annular gap: NPD

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annexes C8, C9

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. <u>Appropriate Technical Documentation and/or Specific Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2021-05-12

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V34.xlsm 1/1

1 Technical description of the product

The fischer injection system FIS V Zero is a bonded fastener consisting of an injection cartridge with injection mortar FIS V Zero and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

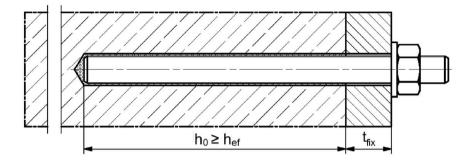
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 7, B 3 to B 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 8 to C 9
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

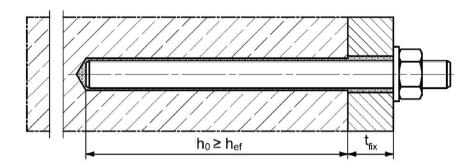
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

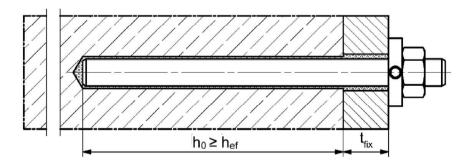
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

fischer anchor rod


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

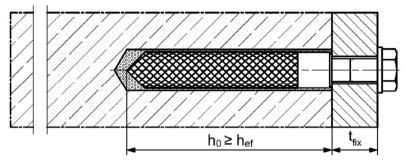
Figures not to scale

 $h_0 = drill hole depth$

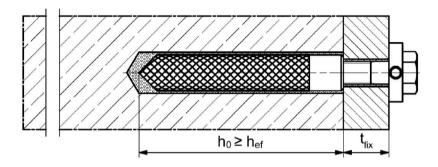
h_{ef} = effective embedment depth

 t_{fix} = thickness of fixture

fischer injection system FIS V Zero


Product description Installation conditions part 1 Annex A 1

Appendix 2 / 26


Installation conditions part 2

fischer internal threaded anchor RG M I

Pre-positioned installation

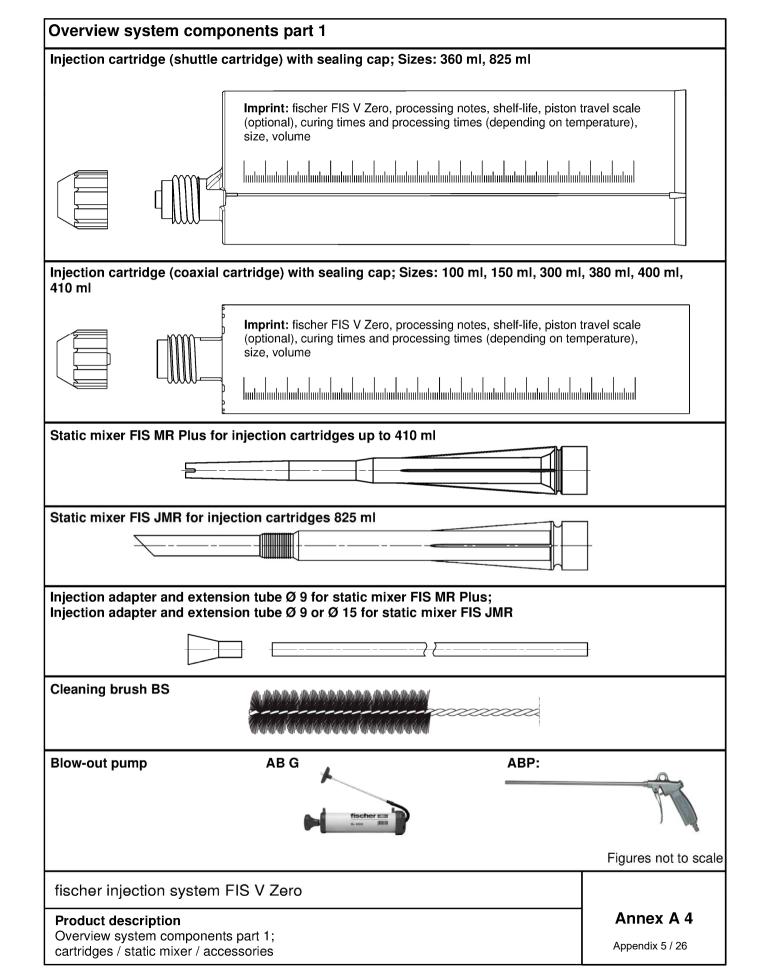
Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

h_{ef} = effective embedment depth

 t_{fix} = thickness of fixture


fischer injection system FIS V Zero

Product descriptionInstallation conditions part 2

Annex A 2

Appendix 3 / 26

Installation conditions part 3 Reinforcing bar $h_0 \ge h_{ef}$ fischer rebar anchor FRA **Pre-positioned installation** $h_0 \ge h_{nom}$ Push through installation (annular gap filled with mortar) t_{fix} $h_0 \ge h_{nom}$ Figures not to scale $h_0 = drill hole depth$ h_{ef} = effective embedment depth t_{fix} = thickness of fixture h_{nom} = overall fastener embedment depth in the concrete fischer injection system FIS V Zero Annex A 3 **Product description** Installation conditions part 3 Appendix 4 / 26

Overview system components part 2 fischer anchor rod Size: M8, M10, M12, M16, M20, M24 fischer internal threaded anchor RG M I Size: M8, M10, M12, M16 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 22$, $\phi 24$, $\phi 25$ fischer rebar anchor FRA Size: M12, M16, M20, M24 Figures not to scale fischer injection system FIS V Zero Annex A 5 **Product description** Overview system components part 2; Appendix 6 / 26 steel components, injection adapter

Tabl	e A6.1: Material	s			
Part	Designation		Mate	erial	
1	Injection cartridge		Mortar, har		
		Steel	Stainles	ss steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	Corrosion re CF	10088-1:2014 esistance class RC III 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation		Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4578 1.4439	; 1.4404; 1; 1.4571; 1; 1.4362; 88-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	EN ISO 3 1.4401; 1.4 1.4571; 1.4	y class 70 ;506-1:2009 ;404; 1.4578; ;439; 1.4362; 88-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % fracture elongation	EN ISO 3 1.4401; 1.4 1.4571; 1.4 EN 1008	y class 70 1506-1:2009 1404; 1.4578; 1439; 1.4362; 88-1:2014 Sture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4571; 1.4	1404; 1.4578; 1439; 1.4362; 88-1:2014	1.4565;1.4529; EN 10088-1:2014
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8\%)$		ling to EN 1992-	1-1/NA
9	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class and k according to NDP or NC 1992-1-1:2004+AC:2010 $f_{uk} = f_{lk} = k \cdot f_{yk}$	Property class 70 or for ISO 3506-1:2009, 1.4571, 1.4578, 1.4439, acc. to EN 10088-1:2014 stance class CRC III 3-1-4:2015 acc. to EN 10088-1:2014 stance class CRC V 3-1-4:2015		
fisc	her injection system	FIS V Zero			
	duct description erials				Annex A 6
Wate	πιαιδ				Appendix 7 / 26

Specifications of intended use (part 1)

Table B1.1: Overview use and performance categories

					FIS V	Zero with	1 <u> </u>		
		Anchor rod fischer inter threaded and RG M I		d anchor	Reinforcing bar		fischer rebar anchor FRA		
Hammer drilling with standard drill bit	540000000				all s	sizes			
Hammer drilling with hollow drill bit (fischer "FHD", Helle				Nom		it diameter	· (d ₀)		
Expert"; Bosch "Spe Hilti "TE-CD, TE-YD	ed Clean";				12 mm t	o 30 mm			
Static and quasi static load, in	uncracked concrete	all sizes	Tables: C1.1 C4.1 C5.1	all sizes	Tables: C2.1 C4.1 C6.1	all sizes	Tables: C3.1 C4.1 C7.1 C9.1	all sizes	Tables C3.2 C4.1 C7.2 C9.2
	cracked concrete ²⁾	all sizes	C8.1	all sizes	C8.2	_1)		_1)	
Seismic performance	C1 ¹⁾	_1)		_1)		_1)		_1)	
category	C2 ¹⁾								
Use conditions —	dry or wet concrete	all s	izes	all sizes		all sizes		all sizes	
I2	water filled hole ²⁾	all s	izes	all sizes		all sizes		all sizes	
Installation direction		D3 (d	ownward	and horizo	ntal and ι	ipwards (e	.g. overhe	ad) installa	ation)
Installation tempera	ture		for the s			T _{i,max} = + temperatu		stallation	
	Temperature range I	-40	°C to +40) °C	`	short term temperature +40 °C; ong term temperature +24 °C)			
In-service temperature	Temperature range II	-40	°C to +80	°C (max. short term temperature +80 °C; max. long term temperature +50 °C)					
	Temperature range III	-40	°C to +120	0 °C) °C (max. short term temperature +120 °C; max. long term temperature +72 °C)				

fischer injection system FIS V Zero	
Intended use	Annex B 1
Specifications (part 1)	Appendix 8 / 26

¹⁾ No performance assessed2) No performance assessed for installation with hollow drill bit in cracked concrete or water filled hole

Specifications of intended use (part 2)

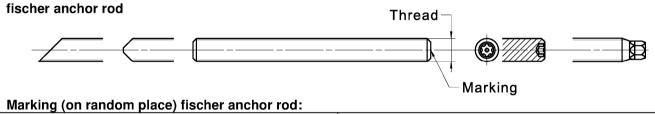
Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN 1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 table A6.1.

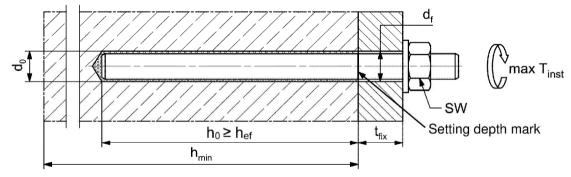
Design:


- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to installation
- Overhead installation is allowed (necessary equipment see installation instruction)

fischer injection system FIS V Zero	
Intended use	Annex B 2
Specifications (part 2)	Appendix 9 / 26

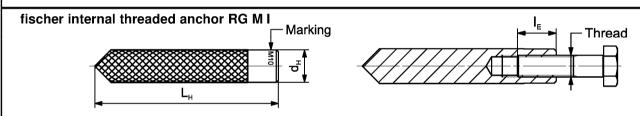

Table B3.1:	Table B3.1: Installation parameters for anchor rods									
Anchor rods			Thread	М8	M10	M12	M16	M20	M24	
Width across flats		SW		13	17	19	24	30	36	
Nominal drill hole	diameter	d 0		10	12	14	18	22	28	
Drill hole depth		h ₀				h ₀ =	- h _{ef}			
Effective		$h_{\text{ef, min}}$		60	60	70	80	90	96	
embedment depth	1	h _{ef, max}		160	200	240	320	400	480	
Minimum spacing edge distance	and minimum	Smin = Cmin	[mm]	40	45	55	65	85	105	
Diameter of the clearance hole of	pre-positioned installation	df		9	12	14	18	22	26	
the fixture	push through installation	df		12	14	16	20	24	30	
Minimum thickness of concrete hember		h _{min}		h _{ef} + 30 (≥100) h _{ef} + 2d ₀						
Maximum installat	ion torque	max T _{inst}	[Nm]	10	20	40	60	120	150	

Steel zinc plated PC¹) 8.8	• or +	Steel hot-dip PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	-
High corrosion resistant steel HCR PC ¹⁾ 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Installation conditions:

Alternatively: Colour coding according to DIN 976-1: 2016

Commercial standard threaded rods, washers and hexagon nuts may also be used, if the following requirements are fulfilled:

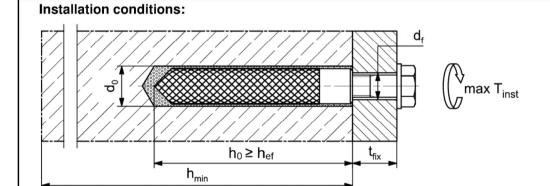

- Materials, dimensions and mechanical properties according to Annex A 6, Table A6.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

Figures not to scale

1) PC = property class

fischer injection system FIS V Zero	
Intended use	Annex B 3
Installation parameters anchor rods	Appendix 10 / 26

Table B4.1: Installation parameters for fischer internal threaded anchors RG M I								
Internal threaded anchors I	RGMI	Thread	М8	M10	M12	M16		
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22		
Nominal drill hole diameter	d ₀] [14	18	20	24		
Drill hole depth	h ₀] [$h_0 = h$	ef = L H			
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160		
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95		
Diameter of clearance hole in the fixture	d _f		9	12	14	18		
Minimum thickness of concrete member	h _{min}		120	125	165	205		
Maximum screw-in depth	I _{E,max}		18	23	26	35		
Minimum screw-in depth	I _{E,min}] [8	10	12	16		
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80		



Marking: Anchor size e. g.: M10

Stainless steel → additional **R**; e.g.: **M10 R**

High corrosion resistant steel \rightarrow additional HCR; e.g.: M10 HCR

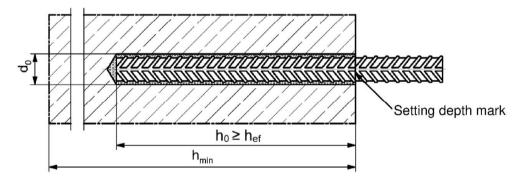
Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 6, Table A6.1

Figures not to scale

fischer injection system FIS V Zero

Intended use
Installation parameters internal threaded anchors RG M I

Appendix 11 / 26


Table B5.1: Installation parameters for reinforcing bars											
Nominal diameter of the bar		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	22	24	25
Nominal drill hole diameter	d ₀		10 12	12 14	14 16	18	20	25	28	30	30
Drill hole depth	h ₀						$h_0 = h_{ef}$	f			
Cff a still a supple a slope and all a still	h _{ef,min}		60	60	70	75	80	90	94	98	100
Effective embedment depth	h _{ef,max}		160	200	240	280	320	400	440	480	500
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	95	105	110
Minimum thickness of concrete member	h _{min}		h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀					

¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

fischer injection system FIS V Zero

Intended use

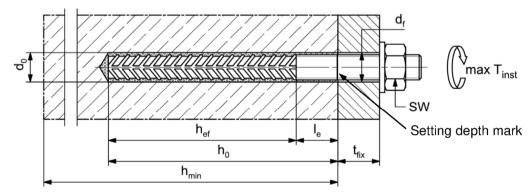
Installation parameters reinforcing bars

Annex B 5

Appendix 12 / 26

Table B6.1: Installation parameters for fischer rebar anchor FRA									
Rebar anchor FRA	Thread	M1:	2 ¹⁾	M16	M20	M24			
Nominal diameter of the bar	ф		12	2	16	20	25		
Width across flats	SW		19)	24	30	36		
Nominal drill hole diameter	d ₀		14	16	20	25	30		
Drill hole depth	h_0				h _{ef}	+ l _e			
Effective embedment depth	h _{ef,min}		70)	80	90	96		
Effective embedment depth	h _{ef,max}		140		220	300	380		
Distance concrete surface to welded joint	le	[]			100				
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	5!	5	65	85	105		
Diameter of pre-positioned anchorage	≤ d _f		14	1	18	22	26		
clearance hole push through anchorage			18	3	22	26	32		
Minimum thickness of concrete member	h _{min}		h ₀ + 30		h ₀ + 2d ₀				
Maximum installation torque	max T _{inst}	[Nm]	40	40 60 120 150					

¹⁾ Both drill hole diameters can be used


fischer rebar anchor FRA

Marking frontal e.g:

FRA (for stainless steel);
FRA HCR (for high corrosion resistant steel)

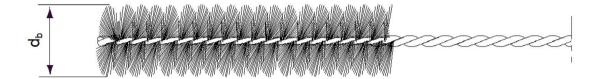
Installation conditions:

Figures not to scale

fischer injection system FIS V Zero

Intended use

Installation parameters fischer rebar anchor FRA


Annex B 6

Appendix 13 / 26

Table B7.1: Parameters of the **cleaning brush** BS (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d₀	[mm]	10	12	14	16	18	20	22	24	25	28	30
Steel brush diameter	dь	[mm]	11	14	16	2	0	2	5	26	27	30	40

Table B7.2: Conditions for use **static mixer** without an **extension tube**

Nominal drill hole diameter	d ₀	[mm]	10	12	14	16	18	20	22	24	25	28	30
Drill hole depth h₀ by	FIS MR Plus	[mm]	≤9	90	≤120	≤140	≤150	≤160	≤170	≤190		≤210	
using	FIS JMR	[mm]	-	1	≤90	≤160	≤180	≤190	≤210	≤2	20	≤2:	50

Table B7.3Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at anchoring base	Maximum processing time t _{work}	Minimum curing time 1) t _{cure}
[°C]	FIS V Zero	FIS V Zero
-10 to -5 ²	6 h	72 h
> -5 to 0 ²⁾	2 h	24 h
> 0 to 5 ²⁾	45 min	12 h
> 5 to 10	20 min	6 h
> 10 to 15	8 min	3 h
> 15 to 20	5 min	2 h
> 20 to 25	3 min	1 h
> 25 to 30	2 min	45 min
> 30 to 40	1 min	30 min

¹⁾ In wet concrete or water filled holes the curing times must be doubled

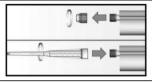
fischer injection system FIS V Zero	
Intended use	Annex B 7
Cleaning brush (steel brush) Processing time and curing time	Appendix 14 / 26

²⁾ Minimum cartridge temperature +5°C

Installation instructions part 1 Drilling and cleaning the hole (hammer drilling with standard drill bit) Drill the hole. 1 Nominal drill hole diameter **d**₀ and drill hole depth **h**₀ see tables B3.1, B4.1, B5.1, B6.1 Clean the drill hole: 2x . . For hef > 12d and / or For h_{ef} ≤ 12d and $d_0 \ge 18 \text{ mm blow out}$ 2 the hole twice with $d_0 < 18 \text{ mm}$ blow out the hole twice oil-free compressed air $(p \ge 6 \text{ bar})$ by hand Brush the drill hole twice. For drill hole diameter $d_0 \ge 18$ mm and / or $h_{ef} > 12d$ 3 use a power drill. For deep holes use an extension. Corresponding brushes see table B7.1 Clean the drill hole: For hef > 12d and / or For h_{ef} ≤ 12d and $d_0 \ge 18$ mm blow out the 4 $d_0 < 18 \text{ mm}$ hole twice with blow out the hole twice oil-free compressed air $(p \ge 6 bar)$ by hand Go to step 5 Drilling and cleaning the hole (hammer drilling with hollow drill bit) Check a suitable hollow drill (see table B1.1) 1 for correct operation of the dust extraction Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data 2 Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter do and drill hole depth ho see tables B3.1, B4.1, B5.1, B6.1 Go to step 5 fischer injection system FIS V Zero

Intended use

Installation instructions part 1


Appendix 15 / 26

Annex B 8

Installation instructions part 2

Preparing the cartridge

5

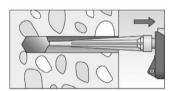
Remove the sealing cap

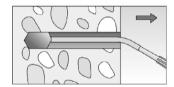
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

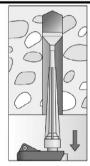
6

Place the cartridge into the dispenser

7






Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to step 8

Injection of the mortar

8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles The conditions for mortar injection without extension tube can be found in **table B7.2**

For deeper drill holes, than those mentioned in **table B7.2**, use a suitable extension tube

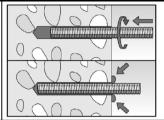
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 = 30$ mm) use an injection adapter

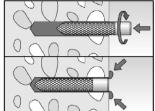
Go to step 9

fischer injection system FIS V Zero

Intended use

Installation instructions part 2

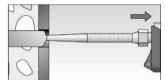

Annex B 9


Appendix 16 / 26

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG M I

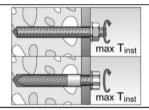
9



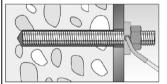
Only use clean and oil-free metal parts. Mark the setting depth of the metal part. Push the anchor rod or fischer internal threaded RG M I anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e.g. fischer centering wedges) or fischer overhead clips.

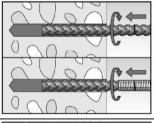

For push through installation fill the annular gap with mortar

10


Wait for the specified curing time t_{cure} see **table B7.3**

11

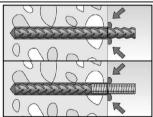
Mounting the fixture max T_{inst} see tables B3.1 and B4.1


Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS V Zero, FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus).

ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor)

Installation reinforcing bars and fischer rebar anchor FRA

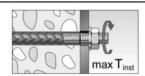


Only use clean and oil-free reinforcing bars or fischer rebar anchor FRA. Mark the setting depth. Push the reinforcement bar or the fischer rebar anchor FRA into the filled hole up to the setting depth mark.

Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor FRA makes pushing easy

9


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see table B7.3

11

Mounting the fixture max T_{inst} see table B6.1

fischer injection system FIS V Zero

Intended use

Installation instructions part 3

Annex B 10

Appendix 17 / 26

Table C1.1: Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods М8 Anchor rod / standard threaded rod M₁₀ M12 M₁₆ M₂₀ M24 Bearing capacity under tension load, steel failure 3) 4.8 23(21) 33 141 15(13) 63 98 Characteristic 5.8 Steel zinc plated 79 19(17) 29(27) 43 123 177 Property class 8.8 29(27) 47(43) 68 126 196 282 [kN] 50 19 29 43 79 123 177 Stainless steel R and high corrosion 70 26 41 59 110 172 247 resistant steel HCR 80 47 126 30 68 196 282 Partial factors 1) 4.8 1,50 5.8 Partial factor Steel zinc plated 1,50 Property class 8.8 1,50 [-] 50 2.86 Stainless steel R and 70 high corrosion 1,502) / 1,87 resistant steel HCR 80 1.60 Bearing capacity under shear load, steel failure 3) without lever arm 4.8 9(8)14(13) 20 38 59 85 Characteristic 5.8 Steel zinc plated 25 47 11(10) 17(16) 74 106 Property class Stainless steel R and 8.8 15(13) 23(21) 34 98 141 63 [kN] 50 9 15 21 39 61 89 high corrosion 70 13 20 30 55 124 86 resistant steel HCR 80 15 23 34 63 98 141 **Ductility factor** k_7 [-] 1.0 with lever arm 52 4.8 15(13) 30(27) 133 259 448 Characteristic 5.8 Steel zinc plated 19(16) 37(33) 65 166 324 560 8.8 30(26) 60(53) 105 266 519 896 [Nm] 50 166 19 37 65 324 560 Stainless steel R and 70 26 784 high corrosion 52 92 232 454 resistant steel HCR 80 30 60 105 266 519 896 Partial factors 1) 4.8 1,25 5.8 Partial factor Steel zinc plated 1,25 Property class 8.8 1,25 [-] 50 2,38 ≻ Stainless steel R and high corrosion 70 $1,25^{2}$ / 1,56resistant steel HCR 80 1,33 1) In absence of other national regulations

Performances

Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods

Annex C 1

Appendix 18 / 26

²⁾ Only admissible for high corrosion resist. steel HCR, with f_{yk} / f_{uk} ≥ 0,8 and A₅ > 12 % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1: Characteristic values for steel failure under tension / shear load of fischer internal threaded anchors RG M I

fischer internal	thread	led anchors	RG M	I	M8	M10	M12	M16
Bearing capaci	ty unde	er tension l	oad, ste	el fa	ilure	-		
		Property	5.8		19	29	43	79
Charact.	$N_{Rk,s}$	class	8.8	FL/N 17	29	47	68	108
resistance with screw		Property	R	[kN]	26	41	59	110
		class 70	HCR		26	41	59	110
Partial factors ¹⁾)							
		Property	5.8			1,	50	
Partial factors		class	8.8	r 1		1,	50	
Parlial lactors	γMs,N	Property	R	[-]		1,	87	
		class 70	HCR			1,	87	
Bearing capaci	ty unde	er shear loa	d, stee	l failu	ire			
Without lever a	rm							
		Property	5.8		9,2	14,5	21,1	39,2
Charact. resistance with	V^0 Rk,s	class	8.8	[kN]	14,6	23,2	33,7	54,0
screw		Property class 70	R		12,8	20,3	29,5	54,8
			HCR		12,8	20,3	29,5	54,8
Ductility factor			k ₇	[-]		1	,0	
With lever arm								
		Property	5.8		20	39	68	173
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266
screw	IVI HK,S	Property	R	[. 4]	26	52	92	232
		class 70	HCR		26	52	92	232
Partial factors ¹⁾)							
		Property	5.8				25	
Partial factors	γMs,V	class	8.8	[-]		1,	25	
T dilla lactors	γ ivis, v	Property	R	[]		1,	56	
		class 70	HCR			1,	56	

¹⁾ In absence of other national regulations

Performances

Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG M I

Annex C 2

Appendix 19 / 26

Bearing capacity un Characteristic resista	f the bar	ф	8 10	12	14	16	20	22	24	25
Characteristic resistar	der tension load,		ilure							
Onal actoriotic recictal	nce N _{Rk,s}	[kN]				A _s · f uk ²				
Bearing capacity un	der shear load, ste	el failu	ire							
Without lever arm	·									
Characteristic resista	nce V ⁰ Rk,s	[kN]			k ₆ ¹	· A _s · f	uk ²⁾			
Ductility factor	k ₇	[-]				1,0				
With lever arm										
Characteristic resista	nce M ⁰ Rk,	[Nm]			1,2	· W _{el} · ·	f _{uk} 2)			
Гаble C3.2: С	ively must be taken haracteristic valu bar anchors FF	ıes f o r	·					oad of	fisch	er
fischer rebar anchoi	r FRA		M12		M16		M20		M2	24
Bearing capacity un	der tension load,	steel fa	ilure	-						
<u> </u>	nce N _{Rk,s}	[kN]	59		110	\Box	172		27	0
Characteristic resista Partial factor ¹⁾	nce N _{Rk,s}	[kN]	59		110		172		27	0
Characteristic resistal Partial factor ¹⁾	nce N _{Rk,s}	[kN]	59		110	1,4	172		27	0
Characteristic resistal Partial factor ¹⁾ Partial factor Bearing capacity un	γMs,N	[-]			110	1,4	172		27	0
Characteristic resistal Partial factor Partial factor Bearing capacity un Without lever arm	γ _{Ms,N} der shear load, ste	[-] eel failu	ire			1,4				
Characteristic resistate Partial factor Partial factor Bearing capacity un Without lever arm Characteristic resistate	$\gamma_{Ms,N}$ nder shear load, ste	[-] eel failu			55		172		14	
Characteristic resistal Partial factor Partial factor Bearing capacity un Without lever arm Characteristic resistal Ductility factor	γ _{Ms,N} der shear load, ste	[-] eel failu	ire			1,4				
Characteristic resistar Partial factor Partial factor Bearing capacity un Without lever arm Characteristic resistar Ductility factor With lever arm	γ _{Ms,N} ider shear load, ste nce V ⁰ _{Rk,s} k ₇	[-] eel failu [kN]	30		55		86		14	1
Characteristic resistal Partial factor Partial factor Bearing capacity un Without lever arm Characteristic resistal Ductility factor	γ _{Ms,N} ider shear load, ste nce V ⁰ _{Rk,s} k ₇	[-] eel failu [kN]	30							1

Performances

Characteristic values for steel failure under tension / shear load of reinforcing bars and fischer rebar anchors FRA

Annex C 3

Appendix 20 / 26

Size							Α	ll s	izes				
Tension load							-						
Installation facto	r	γinst	[-]				See ani	nex	C 5 to C 8	 3			
	compressive stre			ete > C	20/2	 5							
	C25/30							1,0)3				
	C30/37							1,0					
Increasing -	C35/45	\ - -						1,0)9				
factor for τ _{Rk}	C40/50	Ψ_{c}	[-]					1,1	1				
_	C45/55							1,1	3				
_	C50/60							1,1	5				
Splitting failure)		•										
	h / h _{ef} ≥ 2,0							1,0	h _{ef}				
Edge $2,0 > h / h_{ef} > 1,3$			[mm]				4,6	h _{ef}	- 1,8 h				
distance =] [!!!!!!] [2,26 h _{ef}										
Spacing	S _{cr,sp}						2 c	er,sp					
Concrete cone	failure												
Uncracked conc	rete	k _{ucr,N}	 _[-]					11	,0				
Cracked concret	k _{cr,N}			7,7									
Edge distance c _{cr,N}				1,5 h _{ef}									
Spacing		Scr,N	[]		2 C _{cr,N}								
Factors for sus	tained tension loa	ıd								_			
Temperature rar	nge		[-]	24	°C / 4	0 °C	50	°C /	80 °C	72 °C	; / 12	:0 °C	
Factor		Ψ^0_{sus}	[-]		0,67	,		0,6	§7		0,75		
Shear load													
Installation facto	r	γinst	[-]					1,	0				
Concrete pry-o	ut failure												
Factor for pry-ou	ıt failure	k ₈	[-]					2,	0				
Concrete edge	failure												
Effective length shear loading	of fastener in	lf	[mm]			m ≤ 24 m m > 24 m			12 d _{nom}) 8 d _{nom} ; 30	0 mm)			
Calculation dia	meters												
Size				M8		M10	M12		M16	M20		M24	
fischer anchor ro standard thread		d _{nom}		8		10	12		16	20		24	
fischer internal threaded	d anchors RG M I	d _{nom}	[mm]	12		16	18		22	_1)		_1)	
fischer rebar and	chor FRA	d_{nom}		_1)		_1)	12		16	20		25	
Size (nominal di	ameter of the bar)		ф	8	10	12	14	16	6 20	22	24	25	
Reinforcing bar		d_{nom}	[mm]	8	10	12	14	16	3 20	22	24	25	
1) Anchor type	not part of the asse	essmer	nt										
fischer injecti	on system FIS	√ Zer)										
Performances										Anne	א ע	. 4	
DARTARMANAAA													

Table C5.1:	Characteristic values for combined pull-out and concrete failure for fischer
	anchor rods and standard threaded rods in hammer drilled holes;
	uncracked or cracked concrete

	anoraok	ou o. o	. aonoa	001101010	•				
Anchor	rod / standard threa	ded rod		М8	M10	M12	M16	M20	M24
Combin	ed pullout and cond	rete con	e failure			•			
Calculati	on diameter	d	[mm]	8	10	12	16	20	24
Uncrack	ed concrete								
Charact	eristic bond resista	nce in ur	ncracked	concrete	C20/25				
<u>Hammer</u>	-drilling with standard	d drill bit (dry or we	t concrete,	water filled	hole)			
Tem-	I: 24 °C / 40 °C			10	10	10	10	9,5	8,5
perature range	II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm ²]	10	10	10	10	9,5	8,5
	III: 72 °C / 120 °C	=		8	8	8	8	8	7
Hammer	-drilling with hollow d	rill bit (dr	y or wet c	oncrete)					
Tem-	I: 24 °C / 40 °C		[N/mm²]	_1)	6,5	6	6	6	5
perature	II: 50 °C / 80 °C	- $ au_{Rk,ucr}$		_1)	6,5	6	6	6	5
range	III: 72 °C / 120 °C	-		_1)	5,5	5	5	5	4,5
Installat	ion factors							.Ц	
Dry or w	et concrete and		r 1			4	4		
water fille	ed hole	- γinst	[-]			ı	,4		
Cracked	concrete								
Charact	eristic bond resista	nce in cr	acked co	ncrete C2	0/25				
<u>Hammer</u>	-drilling with standard	d drill bit (dry or we	t concrete,	water filled	hole)			
Tem-	I: 24 °C / 40 °C	_		4	4	4	4	4	4
perature	II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]	4	4	4	4	4	4
range	III: 72 °C / 120 °C	-		3	3	3,5	3,5	3,5	3,5
Installat	ion factors					•	•		
	et concrete and	- γinst	[-]			1	,4		
water fille	ed hole	111100	"			•) ·		

¹⁾ No performance assessed

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Annex C 5

Appendix 22 / 26

Table C6.1:	Characteristic values for combined pull-out and concrete failure for
	fischer internal threaded anchors RG M I in hammer drilled holes;
	uncracked or cracked concrete

	anoraona	Ju 0, 0 ,	uonou (301101010					
Internal	threaded anchor RG	MI		М8	M10	M12	M16		
Combine	ed pullout and conc	rete con	e failure						
Calculati	on diameter	d	[mm]	12	16	18	22		
Uncrack	ed concrete								
Characte	eristic bond resistan	ice in ur	ncracked	concrete C20/2	5				
<u>Hammer</u>	<u>-drilling with standard</u>	drill bit (dry or we	t concrete, water	filled hole)				
Tem-	I: 24 °C / 40 °C			7,5	7,5	7,5	7		
	II: 50 °C / 80 °C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	7,5	7,5	7,5	7		
range	III: 72 °C / 120 °C			6,5	6,5	6,5	6		
Hammer	-drilling with hollow dr	ill bit (dr	y or wet c	oncrete)					
Tem-	I: 24 °C / 40 °C			6,5	6,5	6,5	6,5		
perature	II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]	6,5	6,5	6,5	6,5		
range	III: 72 °C / 120 °C			5,5	5,5	5,5	5,5		
Installati	ion factors								
Dry or we	et concrete and		[]		4	4			
water fille	ed hole	γinst	[-]	1,4					
Cracked	concrete								
Characte	eristic bond resistan	ice in cr	acked co	ncrete C20/25					
<u>Hammer</u>	-drilling with standard	drill bit (dry or we	t concrete, water	filled hole)				
Tem-	I: 24 °C / 40 °C			4,5	4	4	3,5		
perature	II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]	4,5	4	4	3,5		
range	III: 72 °C / 120 °C			3,5	3,5	3	3		
Installati	ion factors		· ·				•		
Dry or we	et concrete and	200	[-]		1,	Λ			
water fille	ed hole	γinst	[-]		Ι,	-			

fischer injection	system	FIS \	V Zero
-------------------	--------	-------	--------

Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG M I

Annex C 6

Appendix 23 / 26

	teristic va									for	
Nominal diameter of the b	ar	ф	8	10	12	14	16	20	22	24	25
Combined pullout and cor	crete con	e failure									
Calculation diameter	d	[mm]	8	10	12	14	16	20	22	24	25
Uncracked concrete											
Characteristic bond resist	ance in ur	ncracked	concre	te C20	25						
Hammer-drilling with standa	<u>rd drill bit (</u>	dry or we	t concre	ete, wat	er filled	hole)			1	.	
Tem- I: 24 °C / 40 °C	_		6,5	7	7	7,5	7,5	8	8	8	8
perature II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	7	7	7,5	7,5	8	8	8	8
range III: 72 °C / 120 °C	 >		5,5	5,5	6	6	6,5	6,5	6,5	6,5	6,5
Hammer-drilling with hollow	drill bit (dr	y or wet c	<u>oncrete</u>)				ı			
I: 24 °C / 40 °C			6	6	6	6	6	6	5,5	5,5	5,5
Tem- II: 50 °C / 80 °C	— τ _{Rk.ucr}	[N/mm ²]	6	6	6	6	6	6	5,5	5,5	5,5
range III: 72 °C / 120 °C			5	5	5	5	5	5	4,5	4,5	4,5
Installation factors										,	
Dry or wet concrete and							4.4				
water filled hole	— γinst	[-]					1,4				
	teristic va rebar ar										ie
fischer rebar anchors FRA	1		N	112		M16		M20		М2	4
Combined pullout and cor	crete con	e failure									
Calculation diameter	d	[mm]		12		16		20		25	j
Uncracked concrete											
Characteristic bond resist	ance in ur	ncracked	concre	te C20	25						
Hammer-drilling with standa	<u>rd drill bit (</u>	dry or we	t concre	ete, wat	<u>er filled</u>	hole)					
Tem- I: 24 °C / 40 °C	_			7		7,5		8		8	
perature II: $50 ^{\circ}\text{C} / 80 ^{\circ}\text{C}$	$ au_{Rk,ucr}$	[N/mm ²]		7		7,5		8		8	
range III: 72 °C / 120 °C				6		6,5		6,5		6,	5
Hammer-drilling with hollow	drill bit (dr	y or wet c	<u>oncrete</u>)							
Hammer-drilling with hollow Tem- I: 24 °C / 40 °C	<u>drill bit (dr</u>	y or wet c	oncrete	<u>)</u> 6		6		6		5,	 5

Hammer-drining with standard drin bit (dry or wet concrete, water med note)									
Tem-	I: 24 °C / 40 °C		[N/mm²]	7	7,5	8	8		
perature range	II: 50 °C / 80 °C	τ _{Rk,ucr} │		7	7,5	8	8		
	III: 72 °C / 120 °C			6	6,5	6,5	6,5		
Hammer-drilling with hollow drill bit (dry or wet concrete)									
Tem- perature range	I: 24 °C / 40 °C	- τ _{Rk,ucr}	[N/mm²]	6	6	6	5,5		
	II: 50 °C / 80 °C			6	6	6	5,5		
	III: 72 °C / 120 °C			5	5	5	4,5		
Installation factors									
Dry or wet concrete and			[-]		4	4			
water filled hole		γinst		1,4					
_									

Characteristic values for combined pull-out and concrete failure for reinforcing bars and

Annex C 7

Appendix 24 / 26

fischer injection system FIS V Zero

Performances

fischer rebar anchor FRA

Anchor rod	M8	M10	M12	M16	M20	M24
Displacement-Fact	ors for tension l	oad ¹⁾			•	
Uncracked concre	te; Temperature	range I, II, III				
δN0-Factor	0,04	0,04	0,05	0,06	0,07	0,08
$\frac{\delta N_0 - Factor}{\delta N_\infty - Factor}$ [mm/(N/mn	0,04	0,04	0,05	0,06	0,07	0,08
Cracked concrete;	Temperature rar	nge I, II, III	•	•		
δ _{N0-Factor} [mm/(N/mn	0,10	0,11	0,11	0,13	0,14	0,16
δ _{N∞-Factor}	0,10	0,11	0,11	0,13	0,14	0,16
Displacement-Fact	ors for shear loa	d ²⁾		•		•
Uncracked or crac	ked concrete; Te	mperature ran	ge I, II, III			
δνο-Factor	0,18	0,15	0,12	0,09	0,07	0,06
$\frac{\delta V_{\infty} - Factor}{\delta V_{\infty} - Factor}$ [mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09

1) Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(τ_{Ed} : Design value of the applied tensile bond stress)

(V_{Ed}: Design value of the applied shear force)

Table C8.2: Displacements for fischer internal threaded anchors RG M I

Internal threaded anchor RG M I	M8	M10	M12	M16					
Displacement-Factors for tension load ¹⁾									
Uncracked concrete; Temperature range I, II, III									
$\frac{\delta_{\text{N0-Factor}}}{[\text{mm/(N/mm}^2)]}$	0,06	0,07	0,07	0,07					
δ _{N∞-Factor} [IIIIII/(IN/IIIIII-)]	0,06	0,07	0,07	0,07					
Cracked concrete; Temperature range I, II, III									
$\frac{\delta_{\text{N0-Factor}}}{\epsilon_{\text{N0-Factor}}} [\text{mm/(N/mm}^2)]$	0,10	0,11	0,11	0,12					
δ _{N∞-} Factor	0,10	0,11	0,11	0,12					
Displacement-Factors	for shear load ²⁾								

Uncracked or cracked concrete; i emperature range i, ii, iii											
δv0-Factor	[mm/kN]	0,12	0,09	0,08	0,07						
δv∞-Factor	[mm/kN]	0,18	0,14	0,12	0,10						

1) Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(τ_{Ed}: Design value of the applied tensile bond stress)

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V Zero

Performances

Displacements for anchor rods and fischer internal threaded anchor rods

Annex C 8

Appendix 25 / 26

Nominal of the ba	diameter ar ф	8	10	12	14	16	20	22	24	25
Displacement-Factors for tension load ¹⁾										
Uncracked concrete; Temperature range I, II, III										
δ _{N0} -Factor	[mm/(N/mm²)]	0,05	0,06	0,07	0,08	0,09	0,10	0,11	0,12	0,12
δN∞-Factor	[[[[[[]]/([N/[[[[]]-)]	0,05	0,06	0,07	0,08	0,09	0,10	0,11	0,12	0,12
Displacement-Factors for shear load ²⁾										
Uncrack	ed concrete;	Temperat	ure range	I, II, III						
δv0-Factor	[100 top /LcN 1]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,06
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,09
1) Calculation of effective displacement: 2) Calculation of effective displacement:										

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(τ_{Ed} : Design value of the applied tensile bond stress)

(V_{Ed}: Design value of the applied shear force)

Table C9.2: Displacements for fischer rebar anchors FRA

fischer rebar anchor FRA		M12	M16	M20	M24					
Displacement-Factors for tension load ¹⁾										
Uncrack	ed concrete;	Temperature range I,	II, III							
δ _{N0} -Factor	[mm/(N/mm²)]	0,07	0,09	0,10	0,12					
δ _{N∞-Factor}		0,07	0,09	0,10	0,12					
Displacement-Factors for shear load ²⁾										
Uncracked concrete; Temperature range I, II, III										
δνο-Factor	[mm/kN]	0,12	0,09	0,07	0,06					
δv∞-Factor	[mm/kN]	0,18	0,14	0,11	0,09					

1) Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(τ_{Ed} : Design value of the applied tensile bond stress)

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V Zero

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

Annex C 9

Appendix 26 / 26